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Abstrac t

A generalized Popov  multiplier theory enables
one to analyze system robustness with mixed
real/complex parameters, repeated uncertainties,
and multi-dimensional block uncertainties. us-
ing the Cassini  spacecraft thrust vector control
(1’VC)  system as a design case study, modern ro-
bust control theory has been applied to the real
flight  project.

1. Introduction

‘l’he Cassini  spacecraft will be visiting Saturn, one
of the most interesting planets in our solar sys-
tem, in the year 2004. ~’he Cassini  spacecraft will
be launched in 1997 and achieve a Saturn orbit
in 2004, leading to a four-year mission of orbiting
Saturn and flying by its largest moon Titan. Sci-
entists believe the Titan moon contains materials
similar to primitive earth of millions of years ago.

in Cassini,  there are three major attitude con-
trol subsystetns:  Thrust Vector Control (’NC)
controls the AV burn maneuvers via the articu-
lated main engines and Z-axis facing thrusters;
Reaction Wheel Assembly (RWA)  controls the
fine pointing of the camera on science images; and
the Reaction Control Subsystem (RCS)  controls
the large and quick angular maneuvers via a set
of Y/Z axes facing thrusters.

Robust control analysis plays an important role in
the design of spacecraft attitude control systems
for ensuring satisfactory performance with suffi-
cient stability margin. This paper focuses on the
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analysis of the Cassini  TVC  system against uncer-
tain fuel slosh and flexible boom dynamics. If the
result of robustness analysis indicates that some
uncertain parameters can threaten the stability
of the attitude cent rol system, robust synthesis
tools can be invoked to design a hettcr contro]lcr.

l’hc latest tools developed in [7, 3, 9, 5] have
been used to analyze robustness for Cassini  and
to compute the multivariab]e  stability margin
(MSM). First, the uncertain plant parameters
such as fuel slosh and mag boom mode frequen-
cies, mass properties, etc. will be pulled out of
the closed-loop system. Then a guaranteed lower
bound of the MSM will be computed based on the
generalized Popov multiplier theory. Unlike the
traditional structured singular value approach,
this frequency dependent generalized Popov mul-
tiplier theory cannot only compute the MSM with
respect to mixed and repeated real/complex un-
certainties but can also avoid the titne ccmsum-
ing frequency sweep that conventional methods
always suffer [4]. It turns out that this Popov
tnultiplier  approach is at variance with the re-
cently developed l,inear- Jfairiz lneqrrrrlify  (I,hll)
theory [5, I].

2. Multiplier Approach for  Robustness
Analysis

7’he small-gain theorem and its associated anal-
ysis and synthesis design methods have been the
most important breakthrough in robust control
theory and application during the 80’s. The issues
related to analyzing the MSM of a given closed-
Ioop system have been solved in a mathematically
sound fashion ([6, 4]) and have been continuously
improved by various approaches over the years.
Dasically, one can find the upper bounds of the
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So-called K,,, (or ~t) function to access  the sys-
teln  MSM against the given uncertainty bounds
(SCC [2] and the rcfcrcnces  t,hcrcin). I1owcver, cle-
pcnding  on the nature of the uncertainty (i.e.,
real parameter uncertainty or frequency dcpcn-
dcnt  complex norm bounded transfer functions),
bounds such as the singular value or structured
singular value (SSV) are too conservative for real
parametric robustness. “Tighter and more accu-
rate bounds of Km arc now available for mixed
real/complex robustness analysis ([3, 7, 9, 5]).

‘1’hc  sector bilinear transform and Popov multi-
plier theory together play a crucial role in the
overall methodology. The robustness analysis
problcrn  formulation is rather simp]c (ref. Fig-
ure 2):

~m:xM lIcr7n{M(jw)Sectf(~  G)} >0 Vw ( 1 )

This means that we want to find the greatest
“real” number y such that for some generalized
l’opov multiplier M(s), the sector transformed
transfer function (seen by the uncertainty) is
strictly positive real, If such a multiplier A4(s)
exists, that real number “-/’ is the multivariablc
stability margin (MSM)  of the system.

Figure 1: The Robustness Analysis Problem Setup.

‘1’he  procedure of finding such an MShI is the fol-
lowing:

Step 1: Assign a nominal value to y (say 1 to
start with) and normalize 117G[lm = 1

Step 2: Sector transform the scaled quantity ~G
from (–1, 1) to positive real sector (O, M)

Step 3: Using finite dimensional optimization
approaches such as ellipsoid, cutting plane,
interior point algorithms to find the optimal
multiplier M(s) that can make the system
positive real

Step 4: If M(s) successfully found, go back to
Step 1 and increase -y; if not, go back to
Step 1 decrease y.

‘1’his tyl)c of y iteration can bc carried out us-
ing the standard golden scctioll  (binary search)
method. Notice that this approach can easily bc
expanclcd  to haudlc  the following cases:

1. mixed real/complex uncertainties

2, repeated real/complex uncertainties

3. rnulti-dimensional uncertainty blocks

Another unique feature is that this method of
finding the frequency dependent fixed order mul-
tiplier  ill(s) essentially eliminates t}le unreliable
frequency sweep approach of the Structured Sin-
gular  Value (/1) and the early version of the mul-
tiplier  approach [8]. It gives onc a guaranteed
assessment of the hfSM without missing any fre-
quency points. l)etailed definitions, terminolo-
gies, background theory, and proofs can be found
in [3, 7, 9] which arc omitted here.

This generalized Popov multiplier has a connec-
tion with the latest robust control theory: l,iucar
Matrix Inequality (I,M1).  q’he background theory
can be found in author’s paper [5], which will not
be repeated here.

3. Robustness Analysis of Cassini  TVC
Control System

l’he  pri~nary function of the Cassini  ‘1’VC con-
trol system is to control the spacecraft AV burn
maneuvers via the articulated main engines and
thrusters. l)etailed controller design and back-
ground can be found in [10]. The present paper
focuses on the robustness analysis of the given
lVC closed loop design.

Several uncertain plant parameters are of interest
here:

1. Engine off-set

2. Spacecraft inertia

3. Fuel slosh mode frequency

4. Magboom structure mode frequency

F’igurc 3 shows the Simulink  block diagram and
the details of how to pull  out a particular uncer-
tainty. The input/output ports 1 to 6 are the
rnultiplicativc  uncertainties associated with the
parameters. Evaluating the “size” of the trans-
fer function matrix (port # 1 to # 6) reveals the
MSM of these uncertain parameters.
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I@yrc 2: T h e  Simulink B l o c k  I)iagram  of 1’VC Figure 3: The Simulink Block Diagram of the 2nd
Control System. Order Filter.

‘J’he magi.)oom and fuel slosh modes are realized
as second order dynamic filters with the following
form
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‘J’hese analytical models are derived from a
spring-mass-damper analogy assuming one space-
craft rigid body and one flexible body at a time.
‘J’he interactions between flexible bodies are negli-
gible, The nominal values of each dynamic model
are listed in the following table.

Table 1

Mode Frequency (r/s) Damping k ‘-

Magboom 4.385 0.004 0.07497
Bi-prop 1 0.604 0.01 0.03659
Eli-prop 2 0.668 0.01 0,01835

11 ydrazine 0.94 0.01 0.002218

Figure 3 shows a detailed realization of these 2nd
order filters, where

Gain = (1 + k)%:
Gainl = 2((] + k)%,dn
Gain2 =  ( 1 +  k)z
Gain3 =  2<(1 +- k)%.

Notice that dan~ping and natural frequency al-
ways come as a product which cannot be pulled
out separately as block diagonal individual un-
certainty. This version of the MSM computation
assumes all the damping terms are zero for the
worst case evaluation. ‘J’he multiplier method of
[8] is then used to compute the MSM (Figure 4).

As shown in Figure 4, the Perron  approach ([6])
assuming all the parameters are complex, is too
conservative (0.2Yo),  whereas the frequency sweep
multiplier approach can predict the real MSM 10
times more accurately (3.5 Yo). The actual ro-
bustness with nonzero  damping terms evaluated
via simulations is around 15 Yo, which is consid-
ered to be adequate. “l’he MATLAB  code of I,MI
approach is still under development at the time
this paper was put together, therefore the result
was not included here.



4. Conclusion .5. Ackuowlcdgmmt

‘1’hc  robustness of the Cassini ‘1’brust  Vector Con-
trol systcln  was successfully analyzccl using the
latest tools developed under these-called gener-
alized Popov multiplier theory. The results indi-
cate  that under the nominal expected damping
levels, the contro] design achieves 15 YO robust-
ness margin. Even under worst-case zero damp-
ing conditions, a 3.5 YO simultaneous robustness
margin is achieved.

Unlike the conventional analysis methods, this
ncw approach enables one to analyze mul-
tiple types of uncertainties such as mixed
real/complex, repeated blocks or patterns, and
even multi-dimensional combinations. q’he over-
all method is coded in MA1’LAJ3  and provides
an effective new tool for analyzing control system
robust ness.

Pcwun SSV WI 01 kwlia & Ei_@w 011s4!
102 -  - - - -  - - - - -  - - - - -  r — - - — - - - -  .  .-r- --–. - - - - - - -  - -

r Pedcl. E&, Msw:M.18% 1

1 I’00 ----’-V----=-$EZ=;”-;”102 ------,;_ -i,, - -
104 . ..-’”””” Ed@. kwr!k  & onolna olket

,O$k-”-::.,  . . . . . . . . . Sashed herlla  orJY
- . .  ,L. . . 1

102 ,..! 10° 10’
Hz

SSV F@! 01 MWBPIIBPZMYZ
10’ - ----- —.---, —. . . _.. ___

t -4
- --——= . . .--, --—.. .—. .-—. ---

P8non M%  (S@:  0.2335%
102 - ML.WW MSM (XXX):  36 %

100: .—

1 rl~ -
%m.

,Od Lz..—-L . . ..– L—ALLL,j--—_\_L_  u..u AA-. . . . . . . --,–. ..-, J
10 10 10 10’

Hz

,O.)L  -- --~-–-.-_–.–.--A—_ .–_.  ._. ___ .  . .%.  .  .  .  -_ .  ._ . -_  .-i
, ~1 ,.! 10 10’

Hz

Figure 4: Frequency Sweep Approach (Perron SSV
and Multiplier).
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